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Department of Mechanical Engineering, University of California at Berkeley,
Berkeley, CA 94720-1740, USA

savas@me.berkeley.edu

(Received 11 February 2003 and in revised form 24 June 2004)

We present a combined analytical and numerical study of the instabilities of a pair of
parallel unequal-strength vortices. We extend the analyses of a vortex in an external
strain field (Crow, AIAA J. vol. 8, 1970, p. 2172; Widnall et al., J. Fluid Mech. vol. 66,
1974, p. 35) to include the orbital motion of the vortex pair. For counter-rotating pairs,
the classic Crow-type periodic displacement perturbations are unstable for all vortex
strength ratios, with fastest-growing wavelengths several times the vortex spacing. For
co-rotating pairs, the orbital motion acts to suppress instability due to displacement
perturbations. Instabilities in this case arise for elliptic perturbations at wavelengths
that scale with the vortex core size. We also examine the influence of a second vortex
pair by extending Crouch’s (J. Fluid Mech. vol. 350, 1997, p. 311) analysis. Numerical
results from a spectral initial-value code with subgrid-scale modelling agree with
the growth rates from the theoretical models. Computations reveal the nonlinear
evolution at late times, including wrapping and ring-rejection behaviour observed in
experiments. A pair of co-rotating Gaussian vortices perturbed by noise develops
elliptic instabilities, leading to the formation of vorticity bridges between the two
vortices. The bridging is a prelude to vortex merger. Analytic, computational and
experimental results agree well at circulation Reynolds numbers of order 105.

1. Introduction
Figure 1 shows trailing wake vortices of a large aircraft flying at its cruising altitude.

Water entrained in their cores makes them visible. Photograph (a) shows hints of both
long- and short-wave instabilities, which become clearly visible in photograph (b). In
photograph (c), the long-wave instabilities are about to cross-link to form rings. There
is no obvious evidence that the short-wave instabilities are important in the linking
process. While the short wavelength modes seem not to affect the long ones, the
opposite is not true. Leweke & Williamson (1998) showed that the amplitude of the
short-wavelength modes was much greater near the portions of the vortices that were
about to link, although this is not obvious in figure 1. The long-wave disturbances
grow in the imposed strain field of each vortex acting on the other. Their wavelengths
are several times the vortex separation (Crow 1970). In the high-wavenumber limit,
the stability analysis can be simplified by assuming that the strain field experienced by
each vortex remains unaltered by the instability arising on the partner vortex; hence,
the perturbations de-couple (Tsai & Widnall 1976). The resulting model illustrates
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Figure 1. Photographs of an airplane wake in cruise, showing simultaneous long- and
short-wave instabilities on trailing vortices. The photographs are taken at ground level with a
400mm telephoto lens.

the competition between the self-induced rotation of the plane of the perturbation
and the destabilization due to the strain field. Standing, opposing helical Kelvin
waves sum to yield a planar wave that grows in the strain field. These displacement
perturbations yield the instability considered by Crow. Short-wave elliptic instabilities
can have resonance in the strain field. Moore & Saffman’s (1975) and Tsai & Widnall
(1976)’s more sophisticated analyses of Rankine (uniform core) vortices followed
Crow’s work. These studies took into account the strained, elliptical, two-dimensional
cross-section of the vortex. The growth rate of the three-dimensional instability is
greater than the strength of the imposed strain field. This growth enhancement is
brought about by an additional internal strain field due to the elliptic shape of the
perturbed vortex. Similar instabilities have been found in two-dimensional flows with
elliptic streamlines (Bayly 1986; Pierrehumbert 1986). Eloy & Le Dizes (1999) have
solved for the behaviour of instabilities of a Gaussian vortex in a weak strain field.
Leweke & Williamson (1998) have made experimental observations of short-wave
instabilities on a closely spaced vortex pair of equal strength and opposite rotation at
Reynolds numbers of about 3000. They directly confirm the elliptic instability using
flow visualization and particle image velocimetry (PIV), although the wavenumbers
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were less than those predicted by Eloy & Le Dizes (1999). A review of the elliptical
instability may be found in Kerswell (2002).

Jimenez (1975) has applied Crow’s linear instability analysis to the case of equal-
strength co-rotating vortices, finding them to be stable to long-wave displacement
perturbations. Including some nonlinear effects, Klein, Majda & Damodaran (1995)
confirmed a counter-rotating pair to be unstable, but did not find instabilities for
co-rotating vortex pairs. More recently, Le Dizès & Laporte (2002) have extended
their earlier work (Eloy & Le Dizes 1999) to the problem of elliptical instabilities
arising in strained Gaussian vortex pairs, even accounting for the effect of Reynolds
number.

This paper provides an explanation for the initial appearance of the sinuous
instabilities observed in our recent experiments on co- and counter-rotating vortex
pairs (Bristol 2000; Ortega 2001; Ortega & Savaş 2001). Samples of co-rotating vortex
pair behaviour are shown in figure 2(a, b) and counter-rotating vortex pair behaviour
in figure 2(c), where vortices are marked by dye released into their cores. The merger
of co-rotating vortices in figure 2(a, b) is preceded by the appearance of growing,
sinuous disturbances on each vortex, with a wavelength several times the core size
of the vortex (Chen, Jacob & Savaş 1999; Bristol, Ortega & Savaş 1999, 2003).
Much more pronounced sinuous disturbances are observed in the case of the counter-
rotating vortex pairs in figure 2(c). The wavelength is several times the separation of
the vortices. Instead of simply merging, the weaker vortex wraps around the stronger
one, eventually forming periodic loops, which pinch off to form vortex rings (Ortega,
Bristol & Savaş 2003). An extension of the linear instability analyses of Crow (1970)
and Tsai & Widnall (1976) that accounts for the orbiting unperturbed state of the
vortex pair successfully explains our observations. The more rigorous methods of
Le Dizès & Laporte (2002) and Klein et al. (1995) (for the long-wavelength modes)
could be used as alternative methods. Fabre, Jacquin & Loof (2002) have recently
carried out a thorough calculation of the evolution of displacement disturbances on
a four-vortex system consisting of two symmetric pairs of counter-rotating vortices,
which shows remarkable agreement our observations. Despite its simplicity, however,
the present work captures the essential physics of the instabilities. The eventual
fate of the instability is investigated numerically using an initial value spectral code
(Matsushima & Marcus 1997). Particular attention is paid to the events which trigger
the occurrence of merger in the co-rotating case and the formation of loops in the
counter-rotating case. We note that such loops have also been seen in the CFD
results by Marshall, Brancher & Giovannini (2001), although at lower Reynolds
numbers than the cases discussed here. Recently, Haverkamp, Neuworth & Jacob
(2003) have presented results that aim at reproducing and explaining our experiments
independently.

2. Linear instability of a parallel vortex-filament pair revisited
The analyses of Crow (1970), Widnall, Bliss & Tsai (1974) and Jimenez (1975)

are extended to vortex pairs of arbitrary relative strength by including in the
governing stability equations a term accounting for the orbital motion of the vortex
pair. The circulation of the vortices is denoted by Γ1 and Γ2. Γ1 is the stronger
vortex: |Γ1| � |Γ2|. The core radii are denoted by a1 and a2, and are assumed to
be small compared to their separation d (figure 3). In § 2.1, we shall apply these
core radii to both Rankine and Gaussian vorticity distributions. A right-handed
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Figure 2. Dye visualization, inverted images are shown. Frames are labelled in terms of Ut/b
and (t/T ); U is the towing velocity, t the elapsed time since the wing left the view, b the
wing span, and T the orbital period defined in equation (2.4) (U = 500 cm s−1, b = 40 cm).
(a) Two symmetric co-rotating vortex pairs in the wake of an in-board 50% flapped wing
with Γ = 1.0, d/σ = 5.0, and T ≈ 1.88 s (Bristol 2000). The frames show the formation of
the vortex wake, appearance of the instability, and the final merged state. (b) Similar stages
from an overhead, zoomed-in view of a Γ =0.9, d/σ = 6.67, and T ≈ 3.88 s pair off a 33%
flapped wing. Note that the vortex pair has rotated about one revolution at Ut/b = 40.
(c) Two symmetric counter-rotating vortex pairs in the wake of an out-board triangular
flapped wing (Ortega 2001). Shown are stages of initial growth, formation of rings, and the
crossover of these rings. Γ = −0.37, d/σtip = 4, d/σflap = 7.3, and T ≈ 3.80 s.

coordinate system (x, y, z) with unit vectors (ex, ey, ez) is chosen such that ex is
aligned with Γ1, and ey is in the initial plane of the vortex pair, hence, Γ1 > 0.
As in Crow (1970), each vortex is modelled as a filament; the internal structure is
ignored, except for the effects of self-induction. In § 4, we will investigate some of
the effects of this approximation by comparing the results from numerical calcula-
tions.
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Figure 3. Definition of parameters used in the vortex filament model. Γi is the circulation, ai

the core size, and d the undisturbed vortex separation. Radial perturbations r i = (yi, zi) are
measured from the undisturbed position of vortices (i = 1, 2).

The parameter Γ is chosen to be the circulation ratio of the pair,

Γ ≡ Γ2

Γ1

, (2.1)

so that −1 � Γ � 1. We define a time scale

τ =
2πd2

Γ1

, (2.2)

which is the inverse of the strength of the strain field due to vortex Γ1 acting at the
separation distance d . Initially, the two vortices orbit about their vorticity centroid at
the angular rate

Ω =
1 + Γ

τ
. (2.3)

The orbital period is thus

T =
2π τ

(1 + Γ )
. (2.4)

When Γ = −1, the pair moves at a constant velocity of −ezΓ1/2πd and τ becomes
the time for the pair to move a distance d . As in Crow, we prescribe on each vortex
small radial displacement perturbations as Fourier modes, r̂ i = r i exp(st + ikxi), where
r i =(yi, zi) are allowed to be complex, the wavenumber k is real, and s is the complex
growth rate. Due to the symmetry of the problem, we need only consider k > 0. Indices
are used to label vortices; no summation is implied unless explicitly indicated.

Following Crow’s (1970) analysis, we write down the eigenvalue problem describing
the evolution of the perturbations on the vortices as

α y = Ay (2.5)
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where α = τs, y =(y1, z1, y2, z2)
T and

A =




0 −Γ 0 0
−Γ 0 0 0
0 0 0 −1
0 0 −1 0




︸ ︷︷ ︸
strain field

+




0 0 0 Γ ψ

0 0 Γ χ 0
0 ψ 0 0
χ 0 0 0




︸ ︷︷ ︸
mutual induction

+ τΩ




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




︸ ︷︷ ︸
orbital rotation

+




0 �1 0 0
−�1 0 0 0

0 0 0 Γ �2

0 0 −Γ �2 0




︸ ︷︷ ︸
self-induction

.

The equation is written in the rotating reference frame of the vortex pair. The length
scale is chosen as the unperturbed vortex separation d and the time scale is in units
of τ ; χ and ψ are the mutual induction functions shown in Crow’s figure 4, which are
composed of the modified Bessel functions of the second kind: χ(β) = βK1(β) and
ψ(β) = β2K0(β) + βK1(β), where β = kd . Both χ(β) and ψ(β) are equal to 1 at β = 0
and asymptote to 0 as β → ∞. Note that τΩ = 1 + Γ . �1 and �2 are the self-induced
rotation rates of the vortices and are discussed in § 2.1 below.

Let us consider the terms of the coefficient matrix A. The first term represents the
strain field from one vortex acting on perturbations on the other vortex. The second
term represents the mutual induction between the vortices. For small values of β (long-
wavelengths), ψ and χ are nearly equal to 1, yielding the purely two-dimensional
effect that perturbations on one vortex essentially move the effective origin of the
strain field imposed upon the other vortex. For finite values of β , the effect becomes
three-dimensional in the sense that displacements all along vortices contribute. As β

becomes much larger than one (short wavelengths), the perturbations on the vortices
go through several cycles in an axial distance d , essentially averaging out and yielding
small values of ψ and χ . Thus, the perturbations become decoupled in the high-
wavenumber limit. The third and fourth terms serve to rotate the perturbations,
due to the effect of orbit-induced rotation of the reference frame and self-induction,
respectively. For the cases Γ = −1 and Γ =+1, the equations become equivalent to
those derived by Crow (1970) and Jimenez (1975), respectively.

2.1. Self-induction of a vortex filament

In calculating the self-induction terms �i , we use Kelvin’s (1880) results for a uniform-
core (Rankine) vortex and their extension to a Gaussian (Lamb–Oseen) vortex,
rather than the cut-off approximation as was done in Crow (1970). As presented by
Saffman (1992), the bending modes rotate with a constant angular velocity about the
unperturbed axis at rates given by

� ∗
i =

Γi

2πa2
i

(
2k√

k2 + κ2
n

− 1

)
, (2.6)

where κn is the nth root from the dispersion relation (Saffman (1992), p. 232, equ-
ation 6), and is non-dimensionalized as

�i(k) = β2 2πd2

Γi

� ∗
i (2.7)
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Figure 4. Vortex filament self-rotation rates for the modes with no radial node (n= 0) and
one radial node (n = 1). The solid lines are for a Rankine vortex of circulation Γi and radius a
(refer to the right and lower axes). The symbols are numerically calculated rotation rates for
a Gaussian vortex of circulation Γi and dispersion radius σ = 0.735a (a = 1.36σ ) (refer to the
left and upper axes). �, �, Present calculations; �, from Eloy & Le Dizes (1999).

which includes explicit k2 dependence. For retrograde rotation (opposite to the
azimuthal velocity of the vortex) � ∗

i > 0 and for cograde rotation � ∗
i < 0. The first

root, n= 0, corresponds to displacement perturbations, which are retrograde. The
second root, n= 1, is for elliptic modes with one radial node, in which the centre
and the periphery of the vortex are displaced in opposite directions. These modes
can rotate in either direction, depending on the value of kai . The rotation rates for
the first two modes are shown as solid lines in figure 4. For n � 1, an additional
cograde branch exists, for which � ∗

i <Γi/2πa2
i for all k. However, these do not meet

the criteria for instability as they self-rotate too quickly and will not be considered
further. As argued by Robinson & Saffman (1984), modes with increasingly large
values of n are damped for real flows with viscosity and are thus deemed to be less
important than the n= 0 and n= 1 modes. In addition, as computed recently by
Sipp (2000), the n= 1 modes do not have as great a capacity for growth as do the
n= 0 modes. Therefore, we focus on the lowest value of n which gives instability:
n= 0 for counter-rotating pairs (−1 < Γ < 0), and n= 1 for co-rotating vortex pairs
(0 < Γ < 1).

The experimental vortices exhibit a radial distribution of axial vorticity ωx(r) that
closely follows that of a Gaussian (Lamb–Oseen) vortex (see, for example, Chen et al.
1999):

ωx =
Γi

πσ 2
i

e−r2/σ 2
i (2.8)

where σi is the vorticity dispersion radius. Widnall, Bliss & Zalay (1971)and Moore &
Saffman (1975) have shown that for kai � 1, the n= 0 self-induced rotation rate of
a Gaussian vortex is the same as that of a Rankine vortex of size ai = 1.36σi with
the same circulation. A numerical study using the code of § 4 below shows that this
result remains valid even for wavenumbers of order one (n= 0 in figure 4). Also
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shown in the figure are results for the n= 1 mode needed for Γ > 1. Eloy & Le Dizes
(1999) have calculated kσi = 2.26 for zero self-induction. Figure 4 shows their result,
additional calculations for the n= 1 mode, and those for n= 0 using the numerical
procedure described in § 4. In their calculations, Fabre et al. (2002) used the method
developed by Fabre & Jacquin (2000) to calculate the self-induced rotation, which
precludes spurious instabilities. More accurate means of calculating this curve are
available in Plobeck (1974) and Le Dizès & Laporte (2002).

In figure 4 above and the remainder of this paper, unless noted otherwise, we take
a = a1 = a2 and σ = σ1 = σ2, which also implies � =�1 = �2. We do this simplification
mainly for later comparison to experiments of Ortega et al. (2003) where all vortices
have nearly the same size, and to a lesser extent, to simplify the discussion.

2.2. Non-coupled vortex filament analysis

Following Widnall et al. (1974), we now consider a planar sinusoidal perturbation
imposed on a single vortex subject to the strain field of the undisturbed companion
vortex. This is equivalent to dropping the mutual induction term of A in equa-
tion (2.5), which is strictly valid for d � a. In polar coordinates, equation (2.5) written
in terms of the perturbation amplitude r i = (yi, zi) = (ri, θi) is given by

(
ṙi , θ̇i

)
=

1

τ

(
−ri

(
Γ + 1 − Γi

Γ1

)
sin 2θi, −

(
Γ + 1 − Γi

Γ1

)
cos 2θi︸ ︷︷ ︸

strain field

+ τΩ +
Γi

Γ1

�︸ ︷︷ ︸
rotation

)

(2.9)

where the overdot denotes the time derivative. Setting Γi = −Γ1 (Ω = 0) gives the
equations derived by Widnall et al. (1974). The trigonometric terms in equation (2.9)
describe a stagnation flow of strength Γ for vortex Γ1 and of strength 1 for vortex
Γ2. The term τΩ + �Γi/Γ1 rotates the perturbation vector by the orbital rotation
of the reference frame and self-induction. The strain field acts to destabilize the
perturbation by amplifying it along the principal extensional axis. The rotation terms
act to stabilize the perturbation by rotating it through this extensional axis. Thus
for a perturbation to grow without bound, it must remain fixed at some angle. This
condition, θ̇i = 0, can only occur if the magnitude of the azimuthal component of the
strain field is less than that of the rotational terms. Comparing these two terms for
i = 2 (which covers the general case as the weaker vortex will become unstable before
the stronger), we obtain a necessary condition for instability:

−2 � Γ (1 + � ) � 0. (2.10)

For displacement perturbations for which � > 0, the inequality (2.10) implies
instability only for counter-rotating vortex pairs (Γ < 0), and not for co-rotating
pairs (Γ > 0). The same conclusion holds even if the perturbations on each vortex are
allowed to couple, by altering the imposed strain fields (§ 2.3). In his analysis of the
short-wave instability of a Γ = 1 pair, Wang (1998) deduced the instability condition
in his equation (8), which is a special case of equation (2.10) above.

From the viewpoint of an inertial frame, for instability the perturbation on the
weaker vortex must rotate in the same sense as the orbital motion of the pair
in order to remain aligned in the strain field of the partner vortex. Self-induced
rotation acts on displacement perturbations in a retrograde sense, that is, it rotates
them in the opposite sense to the vortex’s own velocity field. For a co-rotating pair,
this is in exactly the wrong direction to maintain alignment with the strain field.
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Figure 5. Growth rate α of the most unstable eigenvector for the n= 1 mode of co-rotating
Rankine vortices (Γ = 1) with d/a = 5.

For instability in this case, we need a cograde self-rotation. This is only possible
for modes with internal structure (n � 1). For a counter-rotating vortex pair, the
self-induced and orbit-induced rotations are in opposite directions for displacement
perturbations. The two can thus balance each other and, hence, maintain alignment
for rapid destabilization.

The n= 1 mode rotates in a cograde sense (�i < 0) for ka < 2.5 for Rankine vortices
(figure 4). Referring to equation (2.9), this can produce an exponential growth rate at
(ka)max such that sin 2θi = −1 and θ̇i =0, yielding the condition for maximum growth:

�i((ka)max) = −1 + Γ

Γi/Γ1

. (2.11)

Figure 5 shows the growth rate as a function of wavenumber for Γ =1 and d/a =5.0.
A band of instability appears with a peak growth rate of 1 at ka = 2.22. The width
of the band is 0.27.

2.3. Coupled vortex filament analysis

Figure 6 shows the growth rates of two pairs of co-rotating Gaussian vortices for
two experimental cases calculated using the self-induced rotation rates �i(kσ ) from
figure 4. As noted earlier, properly accounting for the internal structure of the elliptical
instability would yield a maximum growth rate larger than 1. The wavenumber for
maximum growth rate (kσ )max is 1.9 for the case (Γ, d/σ ) = (0.9, 6.67), and 1.7 for
(Γ, d/σ ) = (1.0, 5). These same values are obtained using either the coupled (equ-
ation (2.5)) or uncoupled (equation (2.11)) models, since the corresponding values
of kd (13 and 8.5) are high enough to effectively decouple the perturbations on the
vortices.

Figure 7 shows growth rates as a function of wavenumber for vortex pairs
of Γ = −1.0, − 0.5, and − 0.25. The self-induced rotation rate is based on the
displacement modes (n = 0) using equation (2.6). The vortex size-to-separation ratio
for both vortices is fixed at a/d =0.32, which is equivalent to the cut-off distance to
separation ratio of 0.2 used in the top plot of figure 9 in Crow’s paper. In agreement
with Crow, the maximum growth rate for Γ = −1 is approximately 0.8 at kd ≈ 1.
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Figure 6. Growth rates α for co-rotating Gaussian vortex pairs using the numerically
determined elliptic dispersion relation (n= 1) shown as � in figure 4.
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Figure 7. Growth rate α versus wavenumber β for displacement perturbations (n= 0) for
three negative values of Γ and a/d =0.32 (counter-rotating vortex pairs).

The smaller |Γ | produce qualitatively similar results, but with a broader range of
wavenumbers. Notably, the most unstable wavenumber increases as Γ approaches
zero, which is consistent with the observations of Ortega et al. (2003). For the weaker
vortex to balance the faster orbital rotation (for maximum growth), it must self-rotate
at a higher rate, hence a higher wavenumber. From equation (2.11), as Γ → 0−,
�max → −Γ −1. Considering the scaling of � in equation (2.7), and equation (2.6) (or,
equivalently, figure 4), we conclude that kd � 1 as Γ → 0− for the most amplified
wavenumbers.

A summary of the solution of the eigenvalue problem in equation (2.5) is shown in
figure 8 for −1 � Γ � 1 and 0 � a/d � 0.5 for displacement perturbations (n = 0). The
maximum growth rate αmax is shown in figure 8(a) and the corresponding wavenumber
βmax in figure 8(b). The growth rate αmax depends more strongly on Γ than a/d . As Γ

increases from −1 to 0, the maximum growth rate decreases to a minimum and then
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Figure 8. Maximum growth rate αmax (a) and corresponding wavenumber βmax (b) versus
circulation ratio Γ and core size a/d for displacement perturbations for a vortex pair. (c), (d)
Cross-sections at a/d = 0.32.

rises to a maximum value as Γ → 0. The maximum growth rate has an upper value of
1.0: the perturbations can grow no faster than the strain rate τ = Γ1/(2πd2) of vortex 1
on vortex 2. Co-rotating pairs (Γ > 0) are linearly stable to the long-wavelength
perturbations (Jimenez 1975; Klein et al. 1995). As was argued in § 2.2, the primary
effect of changing the sign of Γ from negative to positive is to suppress instability
for displacement modes. This also holds true in the coupled-perturbation analysis.
Figure 8(c) shows a cut through the surface in figure 8(a) at a/d = 0.312, which
corresponds to the cut-off distance to separation ratio of 0.2 used in Crow’s paper.
The value of αmax = 0.79 at Γ = −1 is the growth rate for the Crow instability between
two counter-rotating vortices. The maximum growth rate has a minimum value of
0.77 at Γ = −0.89 and exceeds the value for the Crow instability for Γ � −0.77.
Figure 8(b) displays the surface of βmax . The most unstable wavenumber increases as
Γ increases from −1 to 0. Consequently, the wavelength corresponding to the most
unstable mode is smaller for dissimilar strength vortices. Figure 8(d) further illustrates
this by plotting βmax vs. Γ at a/d = 0.312. It is also evident in figure 8(b) that at
a fixed value of Γ , the most unstable wavenumber increases with increasing a/d ,
demonstrating that larger vortices are unstable to shorter-wavelength perturbations,
particularly for small values of Γ .

3. Two symmetric vortex pairs: a four-vortex system
Four-vortex systems comprising two symmetric pairs have been used as models for

analysing and exploring possible means of controlling the behaviour of the vortex
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Figure 9. Growth rate curves for co-rotating vortex pairs: Γ = 0.4, d/bvc = 0.2, a/bvc =0.03.

wake of large transport aircraft (Rossow 1999; Rennich & Lele 1999; Fabre &
Jacquin 2000; Crouch, Miller & Spalart 2001; Ortega, Bristol & Savaş 2002; Fabre
et al. 2002; Durston et al. 2004). The stability behaviour within a pair of vortices
remains essentially unchanged when the separation of the vortices within the pair
is much smaller that the separation between the two pairs. As the experimental
vortices were produced in the wake of a lifting wing using a single in-board flap
for the co-rotating vortex pairs and outboard flaps for the counter-rotating pairs,
we now discuss the effect of the opposite vortex pair on the single-pair stability.
Crouch (1997) presents the linear stability properties of two co-rotating vortex pairs,
along with results mainly for Γ = 0.5. We present results from Crouch’s governing
equations for both the co- and counter-rotating pairs considered here. Additionally,
we employ the Kelvin/Saffman rotation rate from equation (2.6) instead of the cut-off
approximation, allowing the analysis to apply to the shorter-wavelength instabilities
observed for the co-rotating case. The notation is the same as that of Crouch except
when stated otherwise. We will use the vortex identification scheme employed by
Crouch in his figure 1 and the method of classifying the instability modes from
his figure 2: A1 and A2 for antisymmetric modes, and S1 and S2 for symmetric
modes.

For the purposes of the present discussion, the essential result is that the effect of
the symmetric opposite pair is minor compared to the instability within a pair when
the pairs are far apart. The effects scale as the strain field, thus scaling as (d/bvc)

2,
where d is the separation between the vortices within a pair and bvc is the separation
between the vorticity centroids of the pairs. Note that bvc can be smaller or larger
than b. As noted in Crouch (1997), the analysis strictly applies only in the case of
vanishing (d/bvc)

2, although we believe that the trends observed here for finite (d/bvc)
2

are still valid.

3.1. Co-rotating vortex pairs

The growth rate curves for the case (Γ = 0.4, d/bvc = 0.2, a/bvc = 0.03), calculated
using Floquet theory, are shown in figure 9. The S1 mode has a peak growth rate
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of γ =0.82 at kbvc = 0.70. The S2 and A2 modes are unstable over a narrow band
of wavenumbers and have almost identical growth rate curves. The reason for the
close agreement between these growth rate curves is illustrated by considering the S2
and A2 eigenmodes at A2’s most unstable wavenumber, kbvc =5.07. The eigenmodes
of the right-hand-side pairs are almost identical, while those of the left-hand-side
pairs are out of phase in the axial direction by π radians. As the vortex pairs are
relatively widely spaced, the effects of this phase difference are minimal, such that the
perturbation shapes on the left sides of the S2 and A2 modes become equivalent to
one another. Note also that the relatively small growth rates (when scaled properly)
are much less than those seen in § 2 from the intra-pair instability involving the n=1
self-rotation modes. Thus, for comparison to the experiments we will use only the
results from § 2 (to be discussed in parallel with CFD results in § 4).

3.2. Counter-rotating vortex pairs

Figure 10 shows growth curves corresponding to some of the experimental data in
Ortega et al. (2003). Figure 10(a) is for Γ = −0.37, d/bvc =0.20 and figure 10(b) for
Γ = −0.55, d/bvc = 0.15. The dashed curves are the growth rates of the two-vortex
systems composed of flap and tip vortices. The vertical dotted and dashed-dotted
lines are the experimentally measured instability wavenumbers on the port- and
starboard-side flap vortices, respectively. The growth rate curves of the two- and
four-vortex linear stability results are nearly the same. This is even more evident in
figure 10(b), in which d/bvc has a somewhat smaller value of 0.15. The experimentally
measured wavenumbers all lie within the range of unstable wavenumbers. The port-
side flap vortex consistently exhibits a higher-wavenumber instability than that on
the starboard-side vortex, which may be due to an asymmetry in the strut or airfoil
construction (see Ortega et al. 2003). For the majority of the runs, the differences
between the linear stability results of the single-vortex pairs and those of the two-
vortex pairs are small, indicating that the instability is caused by the interactions of
the flap and tip vortices within each of the counter-rotating pairs. The experimental
wavelengths are on the order of the separation distance of the pairs or about four
times the separation distance of the vortices within a pair. This wavelength is shorter
than that of the classical Γ = −1 Crow instability, which predicts a most unstable
wavelength of order 8–10 times the separation distance. These observations are
consistent with § 2.3 which shows that for fixed a/d , the most unstable wavelength
decreases as Γ → 0−.

The calculations of Fabre et al. (2002) for an optimal growth rate of instabilities
for a vortex system corresponding to that seen in figure 2(c) demonstrate remarkable
corroboration of the results in figure 10(a). They find that for Γ = −0.37, the optimum
growth, as defined in their equation (3.1), occurs at a wavenumber of kbvc ≈ 7 which
agrees well with that in figure 10(a). The corresponding optimal growth rate is the
highest value marked in their figure 2 for periodic configurations!

One possible reason for the difference between the theoretical and experimental
wavelengths is that the self-induced rotation rate does not account for axial flow in
the vortex core. During several preliminary experiments, air bubbles were injected
into the vortex cores. The air bubbles, which became trapped in the vortex cores,
were observed to travel in the same direction as the airfoil, indicating the presence
of axial flow. Others (Ciffone & Orloff 1974; Devenport, Vogel & Zsoldos 1970)
have also shown the existence of axial flow in vortex cores. For the present set
of experiments, no axial flow measurements were made in the vortices, making it
difficult to quantify the axial flow in the vortex cores. Lastly, the helix angle between
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Figure 10. Comparison of observations with the predictions of two- and four-vortex linear
stability analyses. (γ, kbvc) axes are for two vortex-pair systems and (α, kd) axes are for both
an isolated vortex pair and individual pairs within the two vortex-pair systems. The plots
are based upon the average core sizes, relative circulation strengths, and initial separation
distances from PIV measurements. Run numbers refer to flow visualization experiments in
table 3 of Ortega et al. (2003). The vertical lines indicate the observed instability wavenumbers
on the port-side, p, and starboard-side, s, flap vortices from flow visualization. (a) Γ = −0.37,
d/bvc = 0.20 and (b) Γ = −0.55, d/bvc = 0.15.

the vortices, however small, may introduce slight differences between the experimental
and theoretical wavelengths.

4. Numerical simulations
A numerical investigation was carried out to remove the restrictions inherent in

the linear analysis and follow the eventual nonlinear fate of the linear instability
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modes for comparison with the experiments. Further, the numerical results provide
complete knowledge of the velocity u = (u, v, w) and vorticity ω = (ωx, ωy, ωz) fields as
functions of space and time, showing a detailed and three-dimensional development
of the flow not accessible from the experiments.

The computational fluid dynamics (CFD) code employed is a spectral Navier–
Stokes initial-value code in cylindrical coordinates, developed by Matsushima &
Marcus (1997). The basis functions are periodic in the azimuthal and axial directions.
An algebraically mapped set of rational Legendre functions is used in the radial
direction. The code satisfies the pole condition exactly and avoids stiffness problems
there. A simple ∇4 hyperviscosity is used to suppress the buildup of energy at small
length scales, effectively acting as a large-eddy simulation (LES) model for turbulence.
Further details may be found in Matsushima (1995), Matsushima & Marcus (1995)
and Matsushima & Marcus (1997). In all simulations, vortices are initialized as
Gaussian vortices of size σ = 1 cm. The strength of the stronger vortex is fixed as
Γ1 = 2π cm2 s−1. The Reynolds number is, thus, varied by changing the kinematic
viscosity. All results shown are checked to hold under variations in the time step,
the number of modes, the length of the computational box, and the amplitude of the
initial perturbation. For the linear growth-rate results, the effects of turbulence are not
important, as the early phases of the flow are laminar. At later times, turbulence does
arise; however, we focus only on the gross features of the flow and not the turbulent
details.

4.1. Counter-rotating wavelength of maximum growth

Growth rates from the CFD code for Gaussian counter-rotating vortex pairs
corresponding to experimental conditions were compared to those predicted by the
linear theory. We began each run at t = 0 with a perturbation on each vortex,
with relative amplitudes given by the eigenvector for maximum growth rate from
the vortex filament analysis. For the case Γ = −0.37, d/σ1 = 3.96, d/σ2 = 7.47, this
procedure yields a wavenumber of maximum growth of kσ =1.6 ± 0.05, with the
uncertainty based on the finite number of modes used in the axial direction, which is
in agreement with the most unstable wavenumber for a single pair of (kσ )max = 1.594.
The growth rates also compare well, with α =0.89 from CFD, and α =0.94 from the
linear theory. Thus, even though d/σ is outside the presumed range of its applicability,
the linear stability analysis remains useful.

4.2. Co-rotating wavelength of maximum growth

The linear stability theory predicts that co-rotating vortex pairs are unstable to
elliptic perturbations. The importance of such modes for a finite vortex is studied
by perturbing a single vortex in a strain field only (no rotation) with noise at
t = 0 and then observing which mode appears first. The strength of the externally
imposed strain field was 0.0225, which is that found at a distance of d = 6.67σ from
a vortex of strength 2π cm2 s−1. A dominant mode appears with a wavenumber of
kσ =2.28 ± 0.04, with the uncertainty resulting from the finite number of modes
(256) used in the axial direction. A cross-section of the vortex shows the core to be
noticeably displaced to one side, consistent with the n= 1 elliptic instability. These
results are in agreement with those of Eloy & Le Dizes (1999), who found an
elliptically perturbed Gaussian vortex in a weak strain field to grow most quickly at
an axial wavenumber of kσ = 2.26.

This result can be further checked by computing the growth rate for single
perturbations at different wavenumbers. In this procedure, a small-amplitude (0.001σ )



346 R. L. Bristol, J. M. Ortega, P. S. Marcus and Ö. Savaş
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Figure 11. Growth rate vs. wavenumber for a Gaussian vortex embedded in (a) a weak strain
field only; (b) a strain and rotation field for (Γ, d/σ ) = (0.9, 6.67); (c) a strain and rotation for
(Γ, d/σ )= (1.0, 5.0).

displacement mode is excited at a given wavenumber at t = 0. After a short time, this
(stable) displacement mode makes a transition to the (unstable) elliptic mode and then
grows exponentially, demonstrating the coupling between them. Figure 11(a) shows
the results of this procedure for a vortex in a weak strain field without rotation. The
peak growth rate is 1.35 and occurs at a wavenumber of about 2.25. This is close
to the values of 1.38 and 2.26, respectively, from Eloy & Le Dizes (1999). Note that
these values are higher than the growth rates given by the linear theory, which is due
to the fact that the elliptic mode creates additional internal strain not accounted for
in § 2.

The experimental flows for the co-rotating cases are simulated by applying this
procedure to a single vortex, embedded in external strain and rotation fields calculated
from a point-vortex analysis, and with the experimentally determined strength and
separation values. For the d/σ = 6.67 case, the appropriate strain and rotation rates
are 0.0225 and −0.0428. For d/σ =5.0, they are 0.04 and −0.08. The resulting growth
curves are shown in figure 11(b, c). While the growth rate curve for the d/σ = 6.67
case is narrow with a sharp peak at a specific wavenumber (figure 11b), the curve
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Γ (kd)max (kd)max (kd)max

(Γ2/Γ1) d/σ1 d/σ2 linear theory CFD experiment

−0.37 3.96 7.47 1.6 1.6 1.4 ± 0.3 Ortega (2001)
0.90 6.67 6.67 13 (11) 13 6.7 ± 2 Bristol (2000)
1.00 5.00 5.00 8.5 (7) 8 6.5 ± 2 Bristol (2000)

Table 1. Most unstable wavenumbers for a vortex pair. Γ is circulation ratio, d vortex
separation, σ Gaussian vortex core size. Wavenumbers are from the linear theory of § 2, CFD
results of § 4, and experimental results from Bristol (2000) and Ortega (2001). Theoretical
numbers in parentheses are values obtained by using a value of d taken at the vortex
half-orbit location, rather than the geometrical tip-to-flap distance.

for the d/σ = 5.0 case (figure 11c) is noticeably broadened. This still implies that a
single wavelength should emerge from noise, but the width of this curve suggests
that a broader range of wavenumbers may be actually observed in experiments. The
breadth of this curve may be due to the large change in cross-section experienced by
the vortex in this case.

Eloy & Le Dizes (1999) also found that a Gaussian vortex in a strain field has
additional unstable modes with more than one radial node. In particular, a Gaussian
vortex has an n= 2 mode, with a peak at kσ = 3.95. This mode may have been
shifted by the orbit-induced rotation and broadened enough by straining effects to
show up as a rise at the high-wavenumber end of the curve in figure 11(c). These
higher-wavenumber modes, however, are less likely to show in a real flow, due to
the increased effects of viscosity and, possibly, a more limited capacity for growth to
large amplitudes.

In the results above, the presence of a second vortex is simulated only by an im-
posed strain field and solid-body rotation. Simulations with an actual vortex pair
produce essentially the same curve for the more widely spaced pair, but with some
difference for the more closely spaced pair. For d/σ = 6.67, (kσ )max is still 1.7. For
the d/σ = 5.0 case, (kσ )max is shifted to a slightly lower value, 1.6, and occurs
at a higher growth rate, 2.0. This larger growth rate may be the result of two-
dimensional and three-dimensional instabilities becoming somewhat entangled. Also
note that these vortices are near the critical separation distance for merger in two
dimensions, meaning that at places where the vortices are brought closer together
accelerated two-dimensional growth may be experienced (Bristol 2000; Matsushima
1995).

4.3. Most-unstable wavelength: theory, CFD, and experimental comparison

The results are summarized in table 1. For the case of Γ = −0.37 and 1.0, the
simulations predict wavenumbers within experimental uncertainty. But for the case
of Γ =0.9, the prediction is a factor of 2 too high. There are a number of issues
which may explain this discrepancy, in particular experimental uncertainties in the
vortex parameters used as input into the computations. The value of σ is determined
by fitting a Gaussian to an azimuthally averaged vorticity distribution. This, and the
finite size of the PIV interrogation windows, results in some uncertainty in σ . This
can have a significant impact on the wavelength predictions: for example, increasing
σ by 25% for the case d/σ =6.67, yields the value given for the d/σ =5.0 case, thus
changing (kd)max from 13 to 8.5. The vortices do not exist at t = 0 as perfectly parallel
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entities, but are formed from a wing. This most directly affects the separation distance
d , which changes somewhat as the wake rolls up into the vortex pair. The experimental
values for d for the co-rotating case were simply taken as the geometrical separation
between the tip and flap edges of the wing used in the experiments in table 1.
Using, instead, the separation near the half-orbit point changes the values of kd from
13 and 8.5 to 11 and 7, respectively, improving the agreement between theory and
experiment. The counter-rotating vortex separation distances are better determined,
as they only fluctuated slightly before the instabilities become significant. These
uncertainties could be responsible for much, but probably not all, of the differences in
table 1.

Two aspects not captured by either the simulations or theory are the helical path of
the vortices and the upstream–downstream asymmetries of the flow in experiment. The
experimental wakes are created as the wing travels through the fluid, thus producing
a helical path as the pairs orbit. This helix pitch decreases for the co-rotating vortices
as they spiral inwards towards merger (figure 1 of Bristol et al. 2003). At a given
location, this means that the flow upstream involves more widely separated vortices
than the flow downstream. Another significant difference between the predictions for
counter- and co-rotating instabilities is that the latter requires the internal elliptic
mode, whose dispersion relation is likely to be more sensitive to internal vortex
structure and, thus, to experimental uncertainties in σ .

Numerous observations suggest that axial flow may also be present in the vortices,
particularly at early times (Ciffone & Orloff 1974; Devenport et al. 1970). As shown
in the asymptotic formula by Moore & Saffman (1975), the axial flow has the effect
of shifting the peak in the growth curve for the counter-rotating case. For example
with a peak axial velocity of 0.25 (compared to the peak azimuthal velocity of 0.638),
helical modes appear in the vortex (Bristol 2000). This suggests that the resonance
between modes exp(imθ) and exp(−imθ), which previously summed to give a planar
wave, has been broken. Even stronger levels of axial flow can destabilize the vortex
even without a strain field (Lessen, Singh & Paillet 1974). As no obvious helical
modes were observed in the experiments, we presume that the axial flow rates must
be small. Since we do not have axial flow data for these vortices, we do not attempt
to include this effect in the predicted value of (kσ )max .

Overall, though, the results of table 1 are remarkable considering the simplicity
of the model compared to the experimental wake-vortex flows. The two are also in
agreement in form, as the instability in both cases is sinuous, planar, and grows in
near alignment with the extensional axis of the strain field (Bristol et al. 2003; Ortega
et al. 2003).

4.4. Eventual fate of the elliptic and displacement instabilities

Experimentally, the co-rotating vortices merge, while the counter-rotating vortices
produce rings (figure 2). Can the linear modes of instability lead to these results? To
answer this question, we allow the CFD code to run beyond the point of early growth
and observe the eventual nonlinear fate of the instabilities.

4.4.1. Co-rotating case

Figure 12 shows surfaces of vorticity for a co-rotating vortex pair for (Γ, d/σ ) =
(0.9, 5.45), taken as a representative example of the experimental cases. At t = 0, the
weaker vortex is perturbed with the wavenumber of maximum growth ((kσ )max = 1.8
for this case), at an amplitude of 0.001σ . Molecular viscosity ν is used in this run,
with ReΓ = (Γ1 + Γ2)/ν = 105, which is of the same order as that in the experiments.
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t/T = 0 t/T = 0.61

t/T = 0.92 t/T = 1.07

t/T = 1.22 t/T = 1.84

Figure 12. Simulation of the co-rotating case (Γ, d/σ )= (0.9, 5.45). Flap vortex was perturbed
at t = 0 with a wavenumber kσmax . Surface taken at |ω| = 1.35 s−1, corresponding to r = 0.63σ
on stronger vortex. Frame t/T = 0.61 corresponds to figure 13. Orbital period T = 98 s.

128 modes were used in the radial direction, 256 in the azimuthal, and 64 in the axial
direction. The domain is one wavelength long; the results show two wavelengths. The
surface of vorticity shown corresponds to that at r = 0.63σ on the stronger vortex,
or equivalently at 0.54σ on the weaker one. The view is maintained approximately
perpendicular to the vortex pair. The orbital period T for a point-vortex pair at
these conditions is 98 s. At time step t/T = 0.62, an elliptic instability has grown to
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Figure 13. (a) Surfaces of axial vorticity magnitude |ωx | and cross-plane vorticity magnitude
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1/2 from the co-rotating pair in figure 12 at t/T = 0.61. Surfaces are taken at a level

of |ω| = 0.03 s−1, which corresponds to a distance of 2.05σ on the stronger vortex. The arrows
indicate the senses of the respective vorticity components. (b) Cross-plane streamlines in the
rotating reference frame of the pair, overlaid on vorticity magnitude |ω| at cross-sections AA
and BB shown in (a). The grey-scale bar used in (b) is double-valued to highlight the small
values of vorticity outside the vortex cores.

a large amplitude on the weaker vortex, and has also become noticeable on the
stronger vortex. Both are aligned approximately along the respective strain fields. By
t/T = 0.92, thin bridges of vorticity extend from the weaker vortex to the stronger,
which begin to link the two. As time progresses, these bridges grow in a complex
manner, finally bringing the two into merger.

Figure 13 indicates an early stage in the formation of the vorticity bridges. Shown in
figure 13(a) are surfaces of axial vorticity |ωx | and cross-plane vorticity (ω2

y+ω2
z )

1/2 at a
relatively low level of vorticity magnitude |ω|, corresponding to a location of r = 2.05σ

on the stronger vortex. The arrows drawn on the surfaces indicate the general direction
of vorticity on the bridges. Figure 13(b) shows the streamlines taken at two different
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cross-sections. The grey scale on the streamlines corresponds to the magnitude of
total vorticity. The grey-scale bar used in (b) is double-valued to highlight the small
values of vorticity. The origin of the bridges of vorticity is suggested in horizontal
streamlines in the rotating reference frame of the pair, taken at the cross-sections AA
and BB and displayed in figure 13(b). In section AA, corresponding to a slice in the
bridge of vertical vorticity, the periphery of the vortex has been forced outside the
bounding streamlines, as expected with the elliptic instability. This peripheral vertical
vorticity is advected over to the partner vortex, creating the bridge of vorticity seen
in the |ωx | surface.

The edges of this bridge are then turned and stretched against the stagnation
streamlines, as can be seen in section BB. These stretched edges become apparent
as the bridges in the horizontal surface. In later stages of the flow, these bridges
strengthen, eventually leading to merger of the two, as seen in figure 12.

4.4.2. Co-rotating case – single hump

One could argue that any disturbance which is large enough to bring the two
vortices together might initiate merger, and that the elliptic mode is only necessary
for infinitesimal perturbations. A simple way of partially addressing this question is
presented in figure 14, in which one vortex filament has been displaced by a finite
Gaussian hump of amplitude 2σ for a d/σ = 6.67, Γ = 0.9 pair (figure 14). Such a
hump can be viewed as being formed by an infinite range of finite perturbations, thus
serving as one way to see whether modes other than those considered in the linear
instability analysis might also lead to merger. After a short period of time, the initial
hump transitions into a higher-frequency set of modes, which have approximately
the same wavelength as those for the elliptic instability, and bear some structural
resemblance to it (compare t/T =0.68 in figure 14 with t/T = 0.61 in figure 13). A
run with a weaker hump of amplitude σ (not shown) in fact makes a clear transition
to the elliptic instability. Humps with an amplitude of more than 2σ merge in a more
complicated fashion without the clear appearance of any particular modes. Although
not the final word on the subject, this suggests the elliptic instability to be a relatively
robust precursor to merger.

4.4.3. Counter-rotating case: single-vortex pair

Figure 15 shows the results of a run for Γ = −0.37, d/σ1 = 3.96 and d/σ2 = 7.47.
The weaker vortex is perturbed at the most unstable wavelength at t =0. The values
of ReΓ and hyperviscosity are the same as those used in figure 12. The viewpoint is
such that at t = 0 the weaker vortex is in the foreground, and then begins its orbit
around the stronger vortex. At t/T = 0.38, the displacement perturbation has grown,
and has brought the peaks of the perturbation closer to the dominant vortex. The
sections of the weaker vortex in close proximity experience a larger induced velocity
field, causing them to wrap around the stronger vortex, similar to the calculations of
Klein et al. (1995), Quackenbush et al. (1997), and Marshall et al. (2001). The sections
farther from the strong vortex are pushed out, forming the loops at t/T ≈ 0.74. As
the wrapping continues, the ends of the loop are brought together, and the loop itself
begins to self-induce away from the dominant vortex. Eventually, the loop pinches
off to form a vortex ring.

4.4.4. Counter-rotating case: two symmetric vortex pairs

Simulations of the four-vortex wake provide a remarkable description of how the
loop/ring ejected from one counter-rotating pair can affect the opposite vortex pair.
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t/T = 0.51t/T = 0 t/T = 0.68

t/T = 0.85 t/T= 1.02 t/T =1.36

Figure 14. Simulation of a (Γ, d/σ )= (0.9, 6.67) co-rotating pair perturbed by a hump of
amplitude 2σ on the weaker vortex. Some indication of elliptic instability is visible at t/T = 0.68
(compare to t/T = 0.61 in figure 12). Vorticity bridges become clearly visible at t/T = 0.85.
Orbital period T = 147 s.

Figure 16 shows the result of a run for two pairs of vortices like that in figure
15 initially placed at bvc/d = 5.46. The outboard vortices were perturbed 90◦ out
of phase. This run used 128 modes in the radial, 256 in the azimuthal, and 64 in
the axial directions, such that about 10 collocation points span a given vortex core.
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t/T = 0 t/T = 0.38 t/T = 0.67

t/T = 1.12t/T = 0.74 t/T = 0.86

Figure 15. Surfaces of a Γ = −0.37, d/σ1 = 3.96, d/σ2 = 7.47 counter-rotating pair. The
weaker vortex is perturbed at (kd)max at t =0. View is edge-on at t = 0, with the weaker vortex
in the foreground, and remains fixed throughout the simulation. Orbital period T = 156 s.

ReΓ ≈ 63 000, although the coefficient of hyperviscosity is as large as that of molecular
viscosity for this case. The relatively high level of vorticity chosen for the surface
of figure 16 (|ω| = 1.35 s−1) appears to nearly disappear at large times (t/T > 1.2).
Surfaces at much lower levels of vorticity (not shown here) show that there is still
a wake, but that it has lost some of its coherence and much of its concentration.
Similar behaviour can be seen in the PIV data of Ortega et al. (2003). The behaviour
seen in figure 16 bears a remarkable resemblance to the experimental data (figure 2c)
and Ortega (2001), where this behaviour was first observed. Flow visualizations
show the formation of the vortex rings, which cross over to the other side of the
wake and interact strongly with the other vortex pair (figure 2c). PIV data (see
Ortega 2001 and Ortega et al. 2003) show the loss of coherence of the wake at later
times. Independently, Fabre et al. (2002)’s linear analysis of four-vortex systems for
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t/T = 0

t/T = 0.81t/T = 0.64

t/T = 0.96 t/T = 1.13

t/T = 0.33

Figure 16. Isovorticity surfaces of two counter-rotating vortex pairs. Each pair has the same
properties as that in figure 15, except that one pair has the senses of circulation reversed to
establish symmetry. Γ = −0.37, bvc/d = 5.46. Orbital period T = 156 s.

optimal growth confirms the remarkable initial growth rate of the instabilities for a
configuration very close to that in figure 16.

4.5. Experimental evidence for vorticity bridges

Visual evidence for the presence of the vorticity bridges (§ 4.4.1) is shown in figure 17.
The evidence in these figures was noticed in a few cases after the data of Bristol (2000)
were revisited following the suggestions of the numerical calculations presented in
figure 13. The dye was introduced at the cores of the vortices, and, hence, initially
marks the highest level of vorticity. Since the Reynolds number is moderately high,
diffusion is not expected to be a significant factor, and therefore, the vorticity at
the perimeter of the vortex will be only faintly marked by the dye. The vorticity
bridges that are forming at the fringes of the vortex are, at best, weakly marked by
the dye, hence the faint images. Since the vorticity bridges occur at very low levels
of vorticity, the grey scale of the images is stretched at the lower end to bring out
these details. The round halos at the centres of the images result from this stretching.
The circulation ratio is estimated from PIV data as Γ ≈ 0.8. The dye bridges become
visible after about 3/4 orbit of the pair of vortices generated from the tip and flap
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t/T = 0.94

t/T = 1.07

t/T = 1.17

Dye bridges
Dye bridge

Flap

Tip

Flap

Tip

Vortex from the other pair

Figure 17. Side-view flow visualization photos showing the dye bridges between a co-rotating
vortex pair before merger. U = 500 cm s−1, b = 40 cm, d/bvc ≈ 0.4, Γ ≈ 0.8, T ≈ 2.50 s. The
wing is traveling from left to right.

of the wing. As the pair continues orbiting, the dye bridges start wrapping around
the stronger tip vortex as the CFD results in figure 13 predicted. At later times,
the elliptical mode of instability on the weaker flap vortex becomes evident in the
last two frames in the figure as the core and periphery go in opposite directions.
There is also some indication of concurrent elliptical instability on the stronger tip
vortex.

Figure 18 shows axial vorticity contours of an experimental co-rotating vortex pair
taken from PIV data. Similar to figure 17, the scale is stretched so that very low levels
of vorticity can be visualized at the expense of clarity of high vorticity levels in vortex
cores. Since the waves are nearly stationary in the laboratory reference system, the
PIV measurement plane is also fixed with respect to the instability wave and vorticity
bridges. The stronger tip vortex is in view at Ut/b = 41, as well as part of a vortical
band between the two. The weaker vortex enters the view at Ut/b = 48, where the
vorticity bridge is now clearly visible. The bridge wraps around the stronger vortex
during the merger, as seen in the later frames in the figure.
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Figure 18. Experimental vorticity contours showing evidence of vorticity bridges.
U = 200 cm s−1, b = 40 cm, T ≈ 5.6 s, d/bvc ≈ 0.4. Contour increment is kept small to highlight
the vorticity bridge, hence the high contour density at the vortex core. (a) Ut/b = 41, (b) 45,
(c) 48, (d) 52, (e) 55, (f ) 62.

5. Summary
Results from linear stability analyses and CFD calculations are presented to provide

explanations for recent experimental observations of instabilities between unequal
wake-vortex pairs. Experimentally, co-rotating pairs were observed to merge after the
appearance of a short-wavelength sinuous disturbance. For counter-rotating pairs, a
relatively long-wavelength disturbance was observed to grow on the weaker vortex,
evolving into large loops and then rings extending out from the pair.

Extending the linear stability analyses of Crow (1970) and Widnall et al. (1974) by
accounting for the orbital motion of an unequal pair illustrates the mechanism behind
these instabilities. As before, rotation of planar perturbations must be overcome for
the strain field to cause instability. This requires that self- and orbit-induced rotation
partially cancel, which requires self-induction to act in a retrograde sense for a
counter-rotating pair and in a cograde sense for a co-rotating pair. This in turn
allows counter-rotating pairs to be destabilized by long-wavelength displacement
perturbations, whereas co-rotating pairs may be destabilized by shorter-wavelength
elliptic perturbations.

Using the linear technique of Crouch (1997), the effects of an additional symmetric
pair are seen to be minor for separations only moderately larger than the intra-pair
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distance. This is due to the fact that these instabilities are driven by the strain field,
thus their growth rates scale as the inverse of the square of the vortex separation.

Numerical calculations allow the approximations of the linear model to be relaxed,
both for finite vortex-size effects and for the eventual fate of the instabilities. Nearly
the same most-unstable wavenumbers are obtained as in the linear theory, even for
the relatively closely spaced cases. These wavenumbers are in acceptable agreement
with experiments considering uncertainties in measured vortex parameters, although
some error may also be due to the non-ideal nature of the wake vortices.

For the co-rotating case, the long-term simulations resemble the experiments, and
suggest a three-dimensional mechanism that allows merger to occur for a vortex pair
too widely separated to do so in two dimensions. This process begins with a growing
elliptic instability on at least one vortex, pushing peripheral vorticity beyond closed
local streamlines. This vorticity then crosses over to the other vortex, forming an
initial bridge between the two, which is in turn strained and intensified in the plane
perpendicular to the vortex axis. The bridges increase in strength and the merger
process continues until a single vortex remains.

The growth of the displacement instability of the counter-rotating case brings some
sections of the weaker vortex in close proximity to the stronger one. These sections
then wrap around the stronger vortex, leading to the formation of loops. This process
continues, with the loops eventually forming rings which then self-induce away from
the system and interact strongly with the other side of the wake.

R. L. Bristol and J.M. Ortega wish to thank the National Science Foundation for
support from the Graduate Fellowship Program.
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Bristol, R. L., Ortega, J. M. & Savaş, Ö. 1999 A towing tank study of airfoil wake vortices at
ReΓ of order 105. AIAA Paper 99-3419.
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